Acta Crystallographica Section C

Crystal Structure

Communications
ISSN 0108-2701

1-[4-(Methylsulfonyl)phenyl]-5-phenyl-1H-pyrazole derivatives

Caroline Charlier, ${ }^{\text {a* }}$ Bernadette Norberg, ${ }^{\text {a }}$ Laurence Goossens, ${ }^{\text {b }}$ Jean-Pierre Hénichart ${ }^{\text {b }}$ and François Durant ${ }^{\text {a }}$

${ }^{\text {a }}$ Lab. Chimie Moléculaire Structurale, Facultés Universitaires N.-D. de la Paix, 61 Rue de Bruxelles, B-5000 Namur, Belgium, and ${ }^{\mathbf{b}}$ Institut de Chimie Pharmaceutique Albert Lespagnol, Rue J. Laguesse BP 83, 59006 Lille, France
Correspondence e-mail: caroline.charlier@fundp.ac.be

Received 17 May 2004
Accepted 1 July 2004
Online 11 August 2004
Three related compounds containing a pyrazole moiety with vicinal phenyl rings featuring a methylsulfonyl substituent are described, namely 3-methyl-1-[4-(methylsulfonyl)phenyl]-5-phenyl- 1 H -pyrazole, $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$, ethyl 1-[4-(methylsul-fonyl)phenyl]-5-phenyl-1 H -pyrazole-3-carboxylate, $\mathrm{C}_{19} \mathrm{H}_{18}{ }^{-}$ $\mathrm{N}_{2} \mathrm{O}_{4} \mathrm{~S}$, and 1-[4-(methylsulfonyl)phenyl]-3-[3-(morpholino)-phenoxymethyl]-5-phenyl-1 H-pyrazole, $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$. The design of these compounds was based on celecoxib, a selective cyclooxygenase-2 (COX-2) inhibitor, in order to study the influence of various substituents on COX-2 and 5-lipoxygenase (5-LOX) inhibition.

Comment

The three title compounds, i.e. (I), (II), and (III) (see scheme), have been investigated as part of a project aimed at the design of new dual 5 -LOX/COX-2 inhibitors (5-LOX is 5-lipoxygenase and COX-2 is cyclooxygenase-2; Barbey et al., 2002; Pommery et al., 2004). This strategy also appears to be a

(I)

(IV)
promising approach to providing safer non-steroidal antiinflammatory drugs (Charlier \& Michaux, 2003). Moreover, it opens up new perspectives in the prophylactic treatment of
several types of cancer (Romano \& Claria, 2003). Celecoxib, (IV), a selective COX-2 inhibitor, was used as a starting point to investigate several pharmacomodulations and subsequently to study the influence of various substituents on COX-2 and 5-LOX inhibition. While totally inactive against 5-LOX, the three title compounds exhibit different results regarding COX-2 inhibition. Indeed, in contrast to (III), both (I) and (II), which are structurally closer to celecoxib, show an unexpected inactivity towards COX-2 (Barbey et al., 2002; Pommery et al., 2004). Crystal structure determination for the three compounds was carried out in order to elucidate their structural properties and to allow comparison with the previously reported structure of celecoxib (Vasu Dev et al., 1999), as deposited in the Cambridge Structural Database (CSD; refcode DIBBUL; Allen, 2002).

Figure 1
A view of parent compound celecoxib, (IV), showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Figure 2
A view of the two independent molecules in (I) showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

In all three crystal structures, the asymmetric unit includes two independent molecules, which differ slightly in conformation, whereas the parent compound, (IV), has only one molecule in the asymmetric unit (Fig. 1). Except for those influenced by the different nature of the moieties character-

Figure 3

A packing diagram for (I), viewed along the a axis, illustrating the hydrogen-bonding network.

Figure 4
A view of the two independent molecules in (II) showing the atomnumbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.
istic to each compound, the geometric parameters (bond lengths and angles) in the three studied molecules do not differ considerably from those in (IV).

Compound (I) (Fig. 2) crystallizes in space group $P 2_{1} / c$. The two independent molecules are related by a non-crystallographic pseudo-twofold rotational axis (rotation of -177.70° about the b axis). Superimposition of all non- H atoms in the two molecules with the quaternion transformation method (Mackay, 1984) gives a weighted (unit weight) r.m.s. fit of $0.16 \AA(0.12 \AA)$. The two vicinal phenyl rings are twisted with respect to the plane of the pyrazole ring. The extent of this deviation is not exactly the same for the two independent molecules. The $\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$ and $\mathrm{C} 13-\mathrm{C} 12-\mathrm{C} 11-\mathrm{N} 1$ torsion angles are 39.3 (2) and $47.0(2)^{\circ}$, respectively, and the $\mathrm{C} 31-\mathrm{N} 21-\mathrm{C} 25-\mathrm{C} 26$ and $\mathrm{C} 33-\mathrm{C} 32-\mathrm{C} 31-\mathrm{N} 21$ angles are -40.8 (2) and $-54.7(2)^{\circ}$, respectively. These orientations are significantly different from those observed in celecoxib, whose two phenyl rings are almost perpendicular [the C6-C5-C3N 2 and $\mathrm{C} 3-\mathrm{N} 2-\mathrm{C} 12-\mathrm{C} 17$ torsion angles are 16.0 (8) and $98.8(6)^{\circ}$, respectively]. Weak intramolecular interactions in each residue of the asymmetric unit, involving a phenyl H atom (H7 and H27) and a sulfonyl O atom (O1 and O22, respectively), influence the conformation of the sulfonal moiety with respect to the phenyl ring (Table 1). This type of interaction is also found in celecoxib, between the H atom attached to atom C16 and sulfonyl atom O2. In the crystal packing (Fig. 3), cohesion is achieved by, in addition to van der Waal interactions, weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ interactions (Tables 1 and 2).

Compound (II) (Fig. 4) crystallizes in space group Rca ${ }_{1}$. The ethyl ester chain is completely extended, with all the nonH atoms coplanar. The two residues in the asymmetric unit can be almost perfectly superimposed on one another (weighted and unit weight r.m.s. fit values of 0.065 and 0.050 Å, respectively). As observed for (I), both molecules are related by a non-crystallographic pseudo-twofold rotational axis (rotation of -179.2° about the c axis). The two vicinal phenyl rings are not perpendicular, in contrast to the situation

Figure 5
A packing diagram for (II), viewed along the b axis, illustrating the hydrogen-bonding network.

Figure 6

A view of the two independent molecules in (III) showing the atom-numbering scheme. Primes (') indicate the minor-site atoms. Displacement ellipsoids are drawn at the 50% probability level and H atoms have been omitted for clarity.

Figure 7
A packing diagram for (III), illustrating the hydrogen-bonding network.
in celecoxib (Table 3). Again, in both asymmetric-unit residues in (II), a weak intramolecular hydrogen bond is observed, involving a phenyl H atom (H 7 and H 23) and one of the sulfonyl O atoms (O 2 and O 22 ; Table 4). While no classic hydrogen bond is found in the crystal packing (Fig. 5), the methyl atom (C 1 and C 21) of each methylsulfonyl group is involved in a weak intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{N}$ interaction with the pyrazole N atom (N 2 and N 22) of an adjacent molecule (Table 4). Additional weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \pi$ contacts occur. Surprisingly, none of these intermolecular interactions involve the ethyl ester chain (Tables 4 and 5).

Like celecoxib, compound (III) (Fig. 6) crystallizes in space group $P \overline{1}$. One of the residues in the asymmetric unit exhibits disorder in its morpholine moiety, as evidenced by the $U_{\text {eq }}$ values. Among the three studied compounds, the two independent molecules in (III) display the most different confor-
mations (weighted and unit weight r.m.s. fit values of 0.55 and $0.36 \AA$, respectively). The two vicinal phenyl rings are almost perpendicular when the two asymmetric unit residues are superimposed. The torsion angles differ slightly from those observed for (I) and (II) (Table 6). However, both independent molecules exhibit a weak intramolecular hydrogen bond between a phenyl H atom (H 7 and H 33) and one of the sulfonyl O atoms (O2 and O32; Table 7). In the crystal packing (Fig. 7), several intermolecular interactions exist between symmetry-related molecules, notably $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-$ $\mathrm{H} \cdots \pi$ contacts, especially involving the morpholine moiety (Tables 7 and 8). This additional fragment could represent an important anchoring point inside the COX-2 active site, partly explaining the higher COX-2 inhibitory potency of (III) compared with that of (I) or (II).

Experimental

Crystals of (I), (II) and (III) were obtained by slow evaporation from diethyl ether, methanol and isooctane solutions, respectively.

Compound (I)

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}$
$M_{r}=312.39$
Monoclinic, $P 2_{1} / c$
$a=11.007$ (1) A
$b=13.061$ (1) \AA
$c=24.298$ (1) \AA
$\beta=112.652(5)^{\circ}$ 。
$V=3223.7$ (4) \AA^{3}
$Z=8$

$$
\begin{aligned}
& D_{x}=1.287 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \mathrm{Cu} K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \quad \text { reflections } \\
& \theta=30-40^{\circ} \\
& \mu=1.85 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Needle, colorless } \\
& 0.35 \times 0.30 \times 0.20 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: analytical (Alcock, 1970)
$T_{\min }=0.563, T_{\max }=0.708$
11113 measured reflections
6323 independent reflections
5480 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0652 P)^{2}\right. \\
\quad \\
\quad+0.6922 P] \\
\quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.003 \\
\Delta \rho_{\max }=0.33 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.30 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: } S H E L X L 97 \\
\text { Extinction coefficient: } 0.0048(2)
\end{array}
\end{aligned}
$$

Table 1
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$ for (I).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
C1-H1B \cdots O22				
i	0.96	2.39	$3.344(3)$	173
C7-H7 OO1	0.93	2.58	$2.939(2)$	104
C23-H23 \cdots O1	0.93	2.56	$3.083(3)$	116
C27-H27 \cdots O22	0.93	2.55	$2.921(2)$	104
C30-H30 $\cdots 2^{\text {ii }}$	0.93	2.53	$3.436(2)$	165

Symmetry codes: (i) $x-1, y, z$; (ii) $x, \frac{1}{2}-y, z-\frac{1}{2}$.
Table 2
Analysis of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions $\left(\AA^{\circ},^{\circ}\right.$) for (I).
$C g 1$ and $C g 2$ are the centroids of the five-membered $\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 10-\mathrm{C} 11$ and N21-N22-C28-C30-C31 rings, respectively. Cg4 and Cg6 denote the centroids of the $\mathrm{C} 12-\mathrm{C} 17$ and $\mathrm{C} 32-\mathrm{C} 37$ phenyl rings, respectively.

$X-\mathrm{H} \cdots C g$	$\mathrm{H} \cdots C g$	$X-\mathrm{H} \cdots C g$	$X \cdots C g$
$\mathrm{C} 1-\mathrm{H} 1 \cdots C g 4^{\text {iii }}$	2.70	152	$3.577(2)$
$\mathrm{C} 4-\mathrm{H} 4 \cdots C g 2^{\text {iv }}$	2.81	120	$3.379(2)$
$\mathrm{C} 21-\mathrm{H} 21 B \cdots \mathrm{Cg}^{6}$	2.79	146	$3.624(2)$
$\mathrm{C} 24-\mathrm{H} 24 \cdots C g 1^{\text {iii }}$	2.85	120	$3.411(2)$

Symmetry codes: (iii) $1-x, \frac{1}{2}+y, \frac{1}{2}-z$; (iv) $1-x,-\frac{1}{2}+y, \frac{1}{2}-z$; (v) $2-x,-\frac{1}{2}+y$, $\frac{1}{2}-z$.

Compound (II)	
Crystal data	
$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$	$\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$ radiation
$M_{r}=370.41$	Cell parameters from 24
Orthorhombic, Pca 2_{1}	reflections
$a=19.479(1) \AA$	$\theta=40-45^{\circ}$
$b=5.610(1) \AA$	$\mu=1.80 \mathrm{~mm}^{-1}$
$c=33.586(3) \AA$	$T=293(2) \mathrm{K}$
$V=3670.2(8) \AA^{3}$	Needle, colorless
$Z=8$	$0.42 \times 0.05 \times 0.04 \mathrm{~mm}$
$D_{x}=1.341 \mathrm{Mg} \mathrm{m}^{-3}$	
Data collection	
Enraf-Nonius CAD-4	$R_{\text {int }}=0.028$
diffractometer	$\theta_{\text {max }}=72.0^{\circ}$
$\theta / 2 \theta$ scans	$h=-20 \rightarrow 24$
Absorption correction: analytical	$k=-6 \rightarrow 0$
(Alcock, 1970$)$	$l=0 \rightarrow 41$
$T_{\text {min }}=0.519, T_{\text {max }}=0.932$	3 standard reflections
6078 measured reflections	every 200 reflections
3651 independent reflections	intensity decay: 3%
2391 reflections with $I>2 \sigma(I)$	

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.102$
$S=1.01$
3651 reflections
475 parameters
H -atom parameters constrained

$$
\begin{aligned}
& \begin{array}{l}
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.049 P)^{2}\right. \\
\quad \\
\quad+0.121 P] \\
\quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }=0.012 \\
\Delta \rho_{\max }=0.18 \mathrm{e} \AA^{-3} \\
\Delta \rho_{\min }=-0.18 \mathrm{e} \AA^{-3} \\
\text { Extinction correction: } S H E L X L 97 \\
\text { Extinction coefficient: } 0.00046(7)
\end{array}
\end{aligned}
$$

Table 3
Selected torsion angles (${ }^{\circ}$) for (II).

$\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	$-32.9(6)$	$\mathrm{C} 30-\mathrm{N} 21-\mathrm{C} 25-\mathrm{C} 24$	$63.5(6)$
$\mathrm{C} 10-\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 6$	$-64.8(6)$	$\mathrm{C} 32-\mathrm{C} 31-\mathrm{C} 30-\mathrm{N} 21$	$27.1(6)$

Table 4
Hydrogen-bonding geometry ($\AA,^{\circ}$) for (II).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 C \cdots \mathrm{~N} 22$	0.96	2.58	$3.515(6)$	164
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 2$	0.93	2.55	$2.908(6)$	103
$\mathrm{C} 21-\mathrm{H} 21 A \cdots \mathrm{~N}^{\text {vi }}$	0.96	2.60	$3.545(7)$	169
$\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{O} 1^{\text {vii }}$	0.93	2.47	$3.292(6)$	147
$\mathrm{C} 23-\mathrm{H} 23 \cdots \mathrm{O} 22$	0.93	2.54	$2.907(6)$	104

Symmetry codes: (vi) $\frac{1}{2}+x, 1-y, z$; (vii) $x, 1+y, z$.

Table 5
Analysis of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions ($\mathrm{A},{ }^{\circ}$) for (II).
Cg 4 and Cg 6 denote the centroids of the $\mathrm{C} 11-\mathrm{C} 16$ and $\mathrm{C} 31-\mathrm{C} 36$ phenyl rings, respectively.

$X-\mathrm{H} \cdots \mathrm{Cg}$	$\mathrm{H} \cdots \mathrm{Cg}$	$X-\mathrm{H} \cdots \mathrm{Cg}$	$X \cdots C g$
C14-H14 \cdots Cg6 ${ }^{\text {viii }}$	2.88	135	3.597 (6)
$\mathrm{C} 34-\mathrm{H} 34 \cdots \mathrm{Cg} 4^{\mathrm{ix}}$	2.95	138	3.694 (6)

Symmetry codes: (viii) $\frac{1}{2}-x, y, \frac{1}{2}+z$; (ix) $\frac{1}{2}-x, 1+y,-\frac{1}{2}+z$.

Compound (III)

Crystal data

$\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$
$M_{r}=489.59$
Triclinic, $P \overline{1}$
$a=10.325$ (2) \AA
$b=13.874$ (2) \AA
$c=18.094$ (2) \AA
$\alpha=100.823(9)^{\circ}$
$\beta=104.704$ (8$)^{\circ}$
$\gamma=91.888(11)^{\circ}$
$V=2453.6(7) \AA^{3}$
$Z=4$
$D_{x}=1.325 \mathrm{Mg} \mathrm{m}^{-3}$
Data collection
Enraf-Nonius CAD
diffractometer
diffractometer
$\theta / 2 \theta$ scans
Absorption correction: analytical (Alcock, 1970)
$T_{\text {min }}=0.587, T_{\text {max }}=0.716$
15978 measured reflections
9997 independent reflections
8261 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25 reflections
$\theta=38-42^{\circ}$
$\mu=1.49 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Needle, colorless
$0.40 \times 0.28 \times 0.24 \mathrm{~mm}$
$\theta_{\text {max }}=74.3^{\circ}$
$h=-12 \rightarrow 10$
$k=-17 \rightarrow 17$
$l=-21 \rightarrow 22$
3 standard reflections every 200 reflections intensity decay: 5\%

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.085 P)^{2}\right. \\
& +0.8675 P \text {] } \\
& \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\text {max }}=0.47 \mathrm{e}^{\AA^{-3}} \\
& \Delta \rho_{\min }=-0.39 \mathrm{e}^{-3}
\end{aligned}
$$

$w R\left(F^{2}\right)=0.168$
$S=1.04$
9997 reflections
646 parameters

H -atom parameters constrained
Table 6
Selected torsion angles $\left(^{\circ}\right.$) for (III).

$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 10$	$-35.7(3)$	$\mathrm{C} 36-\mathrm{C} 35-\mathrm{N} 31-\mathrm{C} 40$	$48.8(3)$
$\mathrm{N} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 16$	$-56.0(3)$	$\mathrm{N} 31-\mathrm{C} 40-\mathrm{C} 41-\mathrm{C} 42$	$35.7(3)$

Table 7
Hydrogen-bonding geometry ($\AA \mathrm{A}^{\circ}$) for (III).

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 2$	0.93	2.50	2.887 (3)	105
$\mathrm{C} 24-\mathrm{H} 24 A \cdots \mathrm{O} 31^{\text {x }}$	0.97	2.57	3.378 (4)	141
$\mathrm{C} 27-\mathrm{H} 27 \mathrm{~B} \cdots \mathrm{O} 32^{\text {xi }}$	0.97	2.55	3.427 (4)	151
$\mathrm{C} 31-\mathrm{H} 31 A \cdots \mathrm{O} 34^{\text {xii }}$	0.96	2.53	3.489 (8)	174
C33-H33 . O 32	0.93	2.57	2.925 (3)	103
C46-H46 . ${ }^{\text {O }} 1^{\text {xiii }}$	0.93	2.40	3.223 (4)	148

Symmetry codes: (x) $2-x, 1-y, 1-z$; (xi) $1+x, 1+y, z-1$; (xii) $x-1, y-1, z$; (xiii) $1-x,-y,-z$.

Table 8
Analysis of $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions ($\mathrm{A},{ }^{\circ}$) for (III).
$C g 1$ and $C g 2$ are the centroids of the five-membered $\mathrm{N} 1-\mathrm{N} 2-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$ and N31-N32-C28-C29-C30 rings, respectively. $C g 6, C g 8, C g 10$ and $C g 11$ denote the centroids of the C2-C7, C18-C23, C41-C47 and C48-C53 phenyl rings, respectively.

$X-\mathrm{H} \cdots \mathrm{Cg}$	$\mathrm{H} \cdots \mathrm{Cg}$	$X-\mathrm{H} \cdots \mathrm{Cg}$	$X \cdots C g$
$\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{Cg} 1^{\text {xiv }}$	3.04	118	3.580 (2)
C15-H15 $\cdots \mathrm{Cg}^{\text {xv }}$	2.78	153	3.631 (3)
C26-H26A \cdots Cg $8^{\text {xvi }}$	3.02	156	3.926 (3)
$\mathrm{C} 27-\mathrm{H} 27 A \cdots \mathrm{Cg} 1^{\text {xvii }}$	2.90	149	3.763 (4)
C34-H34 \cdots Cg10 ${ }^{\text {xviii }}$	2.78	143	3.571 (2)
$\mathrm{C} 36-\mathrm{H} 36 \cdots \mathrm{Cg} 11^{\text {xix }}$	2.92	138	3.669 (2)
$\mathrm{C} 42-\mathrm{H} 42 \cdots \mathrm{Cg} 2^{\text {xviii }}$	2.91	118	3.445 (2)

Symmetry codes: (xiv) $2-x, 1-y,-z$; (xv) $1-x, 1-y,-z$; (xvi) $3-x, 2-y,-z$; (xvii) $2-x, 2-y,-z$; (xviii) $-x,-y, 1-z$; (xix) $1-x,-y, 1-z$.

For the three title compounds, all H atoms were fixed at idealized positions, with $\mathrm{C}-\mathrm{H}$ distances in the range $0.93-0.97 \AA$. Compound
(II) crystallized in a non-centrosymmetric space group. Refinement of the Flack (1983) parameter using the TWIN BASF option in SHELXL97 (Sheldrick, 1997) led to a value of 0.35 (5) and a value of 0.65 (5) for the inverted structure. In (III), the morpholine moiety of one of the molecules in the asymmetric unit is disordered. This group was refined with a split model over two positions for all atoms of the group, except for atom N33. On the basis of CSD statistics for morpholine bond geometry, distance restraints were applied to $\mathrm{C}-\mathrm{C}$, $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{O}$ distances involving disordered atoms. Constrained refinement of the site-occupation factors led to a value of 0.620 for the major conformation.

For all compounds, data collection: CAD-4 EXPRESS (EnrafNonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: PLATON (Spek, 2003); program(s) used to solve structure: SHELXS97 (Spek, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON; software used to prepare material for publication: enCIFer (Allen et al., 2004).

CC thanks the FNRS for financial support.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DN1055). Services for accessing these data are described at the back of the journal.

References

Alcock, N. W. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, p. 271. Copenhagen: Munksgaard.

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. \& Towler, M. (2004). J. Appl. Cryst. 37, 335-338.
Barbey, S., Goossens, L., Taverne, T., Cornet, J., Choesmel, V., Rouaud, C., Gimeno, G., Yannic Arnoult, S., Michaux, C., Charlier, C., Houssin, R. \& Henichart, J. P. (2002). Bioorg. Med. Chem. Lett. 12, 779-782.
Charlier, C. \& Michaux, C. (2003). Eur. J. Med. Chem. 38, 645-659.
Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1. Enraf-Nonius, Delft, The Netherlands.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Mackay, A. L. (1984). Acta Cryst. A40, 165-166.
Pommery, N., Taverne, T., Telliez, A., Goossens, L., Charlier, C., Pommery, J., Goossens, J. F., Houssin, R., Durant, F. \& Henichart, J. P. (2004). J. Med. Chem. Submitted.
Romano, M. \& Claria, J. (2003). FASEB J. 17, 1986-1995.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1997). HELENA. Utrecht University, The Netherlands.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Vasu Dev, R., Shashi Rekha, K., Vyas, K., Mohanti, S. B., Rajender Kumar, P. \& Om Reddy, G. (1999). Acta Cryst. C55, IUC9900161.

